BfN-Kartieranleitung für „Riffe“ in der deutschen ausschließlichen Wirtschaftszone (AWZ)

Geschütztes Biotop nach § 30 Abs. 2 S. 1 Nr. 6 BNatSchG, FFH - Anhang I - Lebensraumtyp (Code 1170)
BfN-Kartieranleitung für „Riffe“ in der deutschen ausschließlichen Wirtschaftszone (AWZ)¹

Geschütztes Biotop nach § 30 Abs. 2 S. 1 Nr. 6 BNatSchG, FFH - Anhang I - Lebensraumtyp (Code 1170)

D. Boedeker, K. Heinicke (beide BfN)
unter Mitwirkung von:
A. Darr (IOW), B. Schuchardt (Schuchardt & Scholle GbR), L. Gutow, B. Ebbe (beide AWI)

BfN 2018

¹ Diese Kartieranleitung gilt explizit nur für die großmaßstäbige = detaillierte Kartierung, zum Beispiel im Rahmen von Zulassungsverfahren, während bei einer flächendeckenden Biotopkartierung in der deutschen AWZ in einem kleinerem Maßstab bzw. gröber kartiert werden muss.
Inhaltsverzeichnis

Inhaltsverzeichnis ... 3
Abbildungsverzeichnis ... 4
Tabellenverzeichnis ... 6
1 Einführung ... 7
 2 Definition und Beschreibung ... 8
 2.1 Grundlagen ... 8
 2.1.1 Geogene Riffe .. 10
 2.1.2 Biogene Riffe ... 11
 2.2 Korrespondierende Biototypen in der deutschen Standard-
 Biotypenliste .. 11
 2.3 Assoziierte Biotope bzw. Lebensgemeinschaften 11
 2.4 Verbreitung ... 12
 2.5 Gefährdung ... 12
 2.6 Schutz ... 12
 3 Kartieranleitung für Riffe in der AWZ der Nord- und Ostsee im Zuge
 von Zulassungsverfahren .. 12
 3.1 Geogene Riffe - Typ „Steinfeld/Blockfeld Nordsee“ 13
 3.2 Geogene Riffe - Typ „Blockfeld Ostsee“ 15
 3.3 Geogene Riffe - Typ „Marine Findlinge“ Nord- und Ostsee .. 16
 3.4 Geogene Riffe - Typ „Restsediment mit vereinzelten Steinen und/oder
 Blöcken“ in Nord- und Ostsee 16
 4 Kartieranleitung zur Erfassung rifftypischer Besiedlung des
 geogenen Riffkyps „Restsediment mit vereinzelten Steinen und/oder
 Blöcken“ .. 18
 4.1 Biologische Charakterisierung 18
 4.2 Methodik zur Charakterisierung der rifftypischen Biota 18
 4.2.1 Anleitung für Unterwasser-Videountersuchungen 18
 4.2.2 Anleitung zur Erfassung charakteristischer Arten der Riffe 20
 5 Kartieranleitung für biogene Riffe .. 23

Quellenangaben: ... 26
Anlage 1 .. 30
Anlage 2 .. 33
Anlage 3 .. 38
Anlage 4 .. 44
Anlage 5 .. 49
Anlage 6 .. 59
Anlage 7 .. 70
Abbildungsverzeichnis
Abb. 1: Meeresgebiete der deutschen Nordsee mit heterogener und homogener Sedimentverteilung .. 9
Abb. 2: Meeresgebiete der deutschen Ostsee mit heterogener und homogener Sedimentverteilung .. 9
Abb. 3: Die orangenfarbenen „Steinansammlungen“ bilden ein geogenes Riff vom Typ „Steinfeld/Blockfeld (Nordsee)“, die gelben „Steinansammlungen“ und die mit Puffer umgebenen Einzelsteine dagegen nicht ... 13
Abb. 4: In einem „Steinfeld“ eingeschlossene Flächen ohne Steinvorkommen werden ebenfalls dem Riff zugeordnet ... 14
Abb. 5: Beispiel für die Abgrenzung von Polygonen aus Restsedimenten mit vereinzelten Steinen und/oder Blöcken aus dem Schutzgebiet Sylter Außenriff .. 17
Abb. 6: Ablaufschema zur biologischen Charakterisierung von Riffen 20
Abb. 7: Sonarsignatur einer voridentifizierten sublitoralen Muschelbank 24
Abb. 8: Substrattypen und modellierte EUNIS Habitate der Ebene 3 in der deutschen Nordsee .. 34
Abb. 9: Geogenes Riff vom Typ „Mariner Findling“ auf dem Borkum Riffgrund mit dichter Besiedlung von Seenelken (Metridium senile) 35
Abb. 10: Stein mit Seenelken (Metridium senile) teilweise überdeckt mit mobilen Sanden am Borkum Riffgrund ... 36
Abb. 11: Ausschnitt von dicht mit unter anderem Seeigel (Echinus esculentus) und Seeanemonen (Metridium senile, links) sowie Toter Mannshand (Alcyonium digitatum, rechts) besiedelten geogenen Riffen 37
Abb. 12: Rotalgenbewuchs sowie Tange auf einem geogenen Riff vom Typ „Restsediment mit vereinzelten Steinen und/oder Blöcken“ im photischen Bereich des Fehmarnbelts .. 39
Abb. 13: Übergang von Rotalgen-dominierten Bereichen zu epibenthischen Gemeinschaften aus Seescheiden und Schwämmen; Steine und Blöcke im aphotischen Bereich, besiedelt von Schwämmen und Anemonen ... 39
Abb. 14: Sukzession der Lebensgemeinschaften auf den Hartböden in der Kadetrinne: Rotalgenaufwuchs; Miesmuscheln; Polychaeten und Seescheiden; Keine epibenthische Makrobenthosgemeinschaft zu erkennen ... 40
Abb. 15: Freiliegende und teilweise „überschlickte“ Steine und Blöcke mit Miesmuschelbewuchs im FFH-Schutzgebiet Westliche Rönnebank 42
Abb. 16: Von fädigen Braunalgen bedeckter Riffbereich und Makrophyten dominiertem Riffbereich des Foulegrundes in Form eines „Fucus-Waldes“ ... 42
Abb. 17: Fische nutzen das Riff als Rückzugsraum .. 43
Abb. 18: Rifftypische Taxa: Blumentiere (*Metridium*), Großkrebs (Taschenkrebs), Essbarer Seeigel ... 59
Abb. 19: ergänzend zu Abb. 18 Kalkröhrenwürmer .. 60
Abb. 20: ergänzend zu Abb. 18 und Abb. 19 Hydrozoa .. 60
Abb. 21: Rifftypische Taxa: Mehrjährige Blättrige Rotalgen, Blätter-Moostierchen, Hydro-Polypen, Fische (Klippenbarsch) 61
Abb. 22: ergänzend zu Abb. 21 Zuckertang, Schlauchseescheide 61
Abb. 23: Rifftypische Taxa: Großschnecken, Schlauchseescheide, Mehrjährige, blättrige Rotalgen ... 62
Abb. 24: ergänzend zu Abb. 23 Zuckertang, Großkrebs (*Hyas* sp.), Blätter-Moostierchen ... 62
Abb. 25: Seenelken als bedeutende Strukturbildner .. 63
Abb. 26: Miesmuscheln als bedeutende Strukturbildner am Adlergrund in ca. 25 m Tiefe ... 64
Abb. 27: Verschiedene Arten als bedeutende Strukturbildner im Fehmarnbelt in ca. 18 m Tiefe ... 64
Abb. 28: Blättrige Rotalgen als bedeutende Strukturbildner auf der Darßer Schwelle in ca. 16 m Tiefe ... 65
Abb. 29: Verschiedene Arten als bedeutende Strukturbildner (Schwämme, blättrige Rotalgen) in der Kadetrinne in ca. 20 m Tiefe 65
Abb. 30: Epibenthisch dominierte Gemeinschaft mit unter anderem *Metridium senile* im Sylter Außenriff in ca. 25 m Tiefe 66
Abb. 31: Epibenthisch dominierte Gemeinschaft mit *Metridium senile* und Hydro-Polypen im Borkum Riffgrund in ca. 27 m Tiefe 66
Abb. 32: Epibenthisch dominierte Gemeinschaft (Miesmuscheln) am Adlergrund in ca. 15 m Tiefe ... 67
Abb. 33: Epibenthisch dominierte Gemeinschaft (Rotalgen und Miesmuscheln) am Adlergrund in ca. 11 m Tiefe ... 67
Abb. 34: Epibenthisch dominierte Gemeinschaft (Miesmuscheln) im Schutzgebiet Westliche Rönnebank in ca. 25 m Tiefe 68
Abb. 35: Epibenthisch dominierte Gemeinschaft (Rotalgen) im Schutzgebiet Kadetrinne in ca. 20 m Tiefe ... 68
Abb. 36: Epibenthisch dominierte Gemeinschaft (*Metridium* sp.) in der Kieler Bucht in ca. 20 m Tiefe ... 69
Abb. 37: Epibenthisch dominierte Gemeinschaft (Schwämme, Hydrozoen und Manteltiere) im Fehmarnbelt in ca. 28 m Tiefe 69
Tabellenverzeichnis

Tab. 1:	Untersuchung der Epifauna, Makrophyten und Biotopstruktur mit Unterwasservideo	21
Tab. 2:	Rifftypische, im Video erfassbare Taxa der Nordsee (AWZ)	45
Tab. 3:	Rifftypische, im Video erfassbare Taxa der Ostsee (AWZ)	46
Tab. 4:	Potenziell riffbildende (korrespondierende) Biotypen der deutschen Nord- und Ostsee	50
1 Einführung

Bei Riffen handelt es sich um Biotopkomplexe, die in bestimmten räumlichen Konstellationen aus verschiedenen Biotoptypen mit rifftypischen Biozönosen (korrespondierende Biotope) bestehen können und als markante morphologische Großformen des Meeresbodens in Erscheinung treten (Finck et al. 2017).

Die Schutzwürdigkeit von Riffen ergibt sich aus den besonderen ökologischen Funktionen, die sie in Nord- und Ostsee aufweisen. So sind Riffe:

- Lebensräume mit erhöhter Biodiversität, die andere Ökosystemfunktionen als Weichböden bedienen;
- Lebensräume und Rückzugshabitate für zum Teil seltene und gefährdete Tier- und Pflanzenarten;
- Aufwuchsgebiete („Kinderstuben“) mit hoher Produktivität und Artenvielfalt;
- Lebensräume, Laichplätze und Nahrungshabitate für viele Fischarten;
- Nahrungshabitate für Seevögel und Meeressäugetiere sowie
- Trittstein- und Regenerationsreservoirs bei der Ausbreitung von Benthosorganismen.

Da im Zuge von Zulassungsverfahren der zu kartierende Untersuchungsraum vergleichsweise klein ist und eine genaue Kenntnis über Lage und räumliche Erstreckung der dort vorkommenden Riffe gefordert wird, muss der Kartierungsmaßstab und somit auch der Kartierungsaufwand im Vergleich zu einer flächendeckenden Biotopkartierung größer bzw. höher sein.

Bei der Entwicklung des Kartierungskonzepts wurde vom BfN, aufbauend auf umfangreichen Erfahrungen aus eigenen Forschungsfahrten, besonderer Wert auf die Anwenderfreundlichkeit und Praxisnähe der Anleitung gelegt.

Die Bewertung des Erhaltungszustandes bzw. des Erhaltungsgrades der einzelnen Riffvorkommen ist ebenso wenig Gegenstand dieser Kartieranleitung wie Aussagen zur Ersetzbarkeit oder Ausgleichbarkeit von Eingriffen.
2 Definition und Beschreibung

2.1 Grundlagen

Das Interpretationshandbuch der EU unterscheidet geogene und biogene Riffe und beide Typen können sowohl eine Zonierung von benthischen Algen- und Tiergemeinschaften als auch von koralligenen und anderen biotischen Aggregationen aufweisen („Reefs may support a zonation of benthic communities of algae and animal species as well as concretions and corallogenic concretions.“). Aus der Formulierung „may support“ folgt, dass geogene Riffe nicht zwingend dauerhaft von Organismen besiedelt sein müssen.

Gemäß der „Riff“-Definition des Interpretationshandbuches der EU (Anlage 1) ist das Vorkommen von geogenen oder biogenen Hartsubstraten bzw. Steinen mit einer Mindestkorngröße von mehr als 64 mm, die sich topographisch vom umgebenden Meeresboden unterscheiden, für die Erfassung und Abgrenzung von Riffen entscheidend. Das Interpretationshandbuch enthält allerdings keine Angaben über Mindestgrößen von Riffflächen oder Hinweise zu deren Abgrenzung gegenüber der Umgebung.

In der Roten Liste der gefährdeten Biototypen Deutschlands (Finck et al. 2017) sind für die beiden Meeresregionen spezifische Biotypen der Riffe mit rifftypischen Biozönosen definiert worden (Fürhaupter et al. 2017, vergleiche auch Kapitel 2.2 und Anlage 5). Bei der Riffkartierung im Rahmen von Zulassungsverfahren ist es allerdings nicht erforderlich, die einzelnen Biotypen, die Bestandteil des Riffs sein können, zu erfassen, weil das geschützte Biotop Rift als Komplex relevant ist.

Den derzeitigen Kenntnisstand über die Verbreitung von Riffen (und Sandbänken) in der AWZ der deutschen Nord- und Ostsee illustriert eine Karte auf der Internetseite des BfN\(^3\), die entsprechend des Fortlaufs der Kartierungsarbeiten aktualisiert werden wird. Weitere

\(^1\) Im Folgenden als Interpretationshandbuch bezeichnet
\(^3\) https://www.bfn.de/themen/meeresnaturschutz/marine-biotoypen/ffh-lebensraumtypen/riffe.html

Abb. 1: Meeresgebiete der deutschen Nordsee mit heterogener und homogener Sedimentverteilung (Quelle: BSH (2016), Hintergrund: Sedimentverteilung nach Figge (Laurer et al. 2013))

Abb. 2: Meeresgebiete der deutschen Ostsee mit heterogener und homogener Sedimentverteilung (Quelle: BSH (2016), Hintergrund: Sedimentverteilung nach Tauber (2012))
Hinsichtlich der Methodik zur Erfassung der Lockersedimente mittels hochauflösender Sonarre ist eine entsprechende Kartieranleitung des BSH anzuwenden, die ständig aktualisiert und fortgeschrieben wird, aber in der derzeitigen Fassung (Version 1.0, BSH 2016) noch keine Anleitung zur Erfassung von Blöcken bzw. Stein- und Blockfeldern enthält.

2.1.1 Geogene Riffe

Zu den geogenen Riffen können in der deutschen Nord- und Ostsee die folgenden aus nicht-biogenen Substraten entstandenen Strukturen bzw. Hartböden des Meeresbodens zählen:

- Anstehender Fels (vermutlich nicht in der deutschen AWZ);
- Geschiebemergelrücken;
- Blockfelder der Ostsee (Kantenlänge der Blöcke ≥ 50 cm)\(^4\);
- Stein- bzw. Blockfelder der Nordsee (ab Steinen mit einer Kantenlänge von ca. 30 - 50 cm und/oder Blöcken);
- Restsedimente mit Steinen (Durchmesser von Steinen im Sinne dieser Anleitung ≥ 6,4 cm bis 50 cm) und/oder Blöcken;
- sowie marine Findlinge (Blöcke mit einer Kantenlänge ≥ 2 m).

Geogene Riffe sind in der AWZ der deutschen Nordsee relativ selten und die einzelnen Steine und/oder Blöcke liegen häufig weit voneinander entfernt. In der AWZ der deutschen Ostsee sind sie dagegen häufiger und teilweise deutlich größer ausgeprägt, allerdings selten als Blockansammlungen. Vielmehr sind sie häufig klein, aber stark strukturierte Mosaike von Blöcken, Steinen, Geröllen, Sanden (teilweise Schluff), besonders ausgeprägt in Form von Restsedimenten\(^5\) und Geschiebemergelrücken (vergleiche LUNG MV o. J.\(^6\)).

Aufgrund der unterschiedlichen geologischen Naturraumausstattungen und der daraus resultierenden voneinander abweichenden ökologischen Verhältnisse sind in Nord- und Ostsee teilweise unterschiedliche Herangehensweisen und Kriterien für die Erfassung und Abgrenzung von geogenen Riffen erforderlich (siehe Kapitel 3.1 und 3.2).

Nicht kartiert werden künstliche oder standortuntypische Hartsubstrate sowie sonstige künstliche Strukturen. Die im Rahmen von behördlich veranlassten Maßnahmen zur Wiederherstellung von Biotopen (zum Beispiel im Gebietsmanagement oder als Kompensation) eingebrachten natürlichen Steine und Blöcke werden als Riffe erfasst, sofern sie die Anforderungen der Kartieranleitung erfüllen.

\(^4\) In Anlehnung an Blott & Pye (2001)

\(^5\) Im engeren Sinne bezeichnet man mit dem Begriff Restsediment grobkörnige Sedimentgemische auf Abrasionsflächen, die durch die selektive Abrasion von Geschiebemergel entstanden sind.\(^6\)

https://www.lung.mv-regierung.de/dateien/ffh_sb_lrt_1170.pdf
2.1.2 **Biogene Riffe**

2.2 **Korrespondierende Biotoptypen in der deutschen Standard-Biotoptypenliste**

Anlage 5 listet zur Information alle potenziell riffbildenden (korrespondierenden) Biotoptypen der deutschen Nord- und Ostsee (Küstenmeer und AWZ) mit ihren Biozönosen in den verschiedenen hierarchischen Ebenen gemäß der Biotopklassifikation der deutschen Roten Liste (Fürhaupter et al. 2017) auf.\(^9\) Korrespondierende Biotoptypen müssen bei der Riffkartierung nicht einzeln erfasst werden.

2.3 **Assozierte Biotope bzw. Lebensgemeinschaften**

Als Lebensgemeinschaft ist in der Nordsee die in Bezug auf die Endofauna äußerst artenreiche „Goniadella-Spisula-Gemeinschaft auf Grobsand oder Kies“ häufig mit geogenen Riffen assoziiert (Rachor & Gusky 2004).

\(^{10}\) Auszug aus der aktuellen Standard-Biotoptypenliste für Meeresbiotope der deutschen Nord- und Ostsee (Fürhaupter et al. 2017 in Finck et al. 2017)

\(^{7}\) Rote Liste Codes: 02.02.04.01.01.01, 02.02.06.01.02.01, 02.02.08.01.01.01, 02.02.10.01.02.01 (Fürhaupter et al. 2017 in Finck et al. 2017)

\(^{8}\) Rote Liste Codes: 02.02.06.01.03 und 02.02.10.01.03 (Fürhaupter et al. 2017 in Finck et al. 2017)

\(^{9}\) Auszug aus der aktuellen Standard-Biotoptypenliste für Meeresbiotope der deutschen Nord- und Ostsee (Fürhaupter et al. 2017 in Finck et al. 2017)

2.4 Verbreitung
Der Biotopkomplex „Riff“ ist weltweit verbreitet und findet sich mit seinen sehr vielfältigen Ausprägungen in fast allen Tiefenzonen der Weltmeeere einschließlich der europäischen Schelfmeere.

2.5 Gefährdung

2.6 Schutz
Riffe unterliegen EU-weit als natürlicher Lebensraumtyp des Anhangs I den Schutzvorgaben der FFH-Richtlinie (vergleiche §§ 33 ff. BNatSchG) sowie der Umwelthaftungsrichtlinie (vergleiche §§ 4 ff. USchadG). In Deutschland sind Riffe darüber hinaus ein gesetzlich geschütztes Biotop gemäß § 30 BNatSchG und teilweise auch in Naturschutzgebieten durch Verordnung geschützt (vergleiche zum Beispiel § 3 Abs. 3 Nr. 1 NSGBRgV). Für ihren Erhalt ist es essentiell, einen naturnahen und ungestörten Zustand des Biotopkomplexes und seiner Biozönosen zu erhalten bzw. wiederherzustellen. Hierfür sind neben der Reduzierung des Eintrags von Nähr- und Schadstoffen insbesondere Aktivitäten und Projekte zu vermeiden, die eine qualitative Beeinträchtigung der auf und von dem Riff lebenden Organismen bewirken können sowie solche, die Riffe quantitativ beeinträchtigen oder zerstören, zum Beispiel durch Entnahme oder Umlagerung von rifftypischen Substraten.

3 Kartieranleitung für Riffe in der AWZ der Nord- und Ostsee im Zuge von Zulassungsverfahren
Eine Darlegung der naturräumlichen Gegebenheiten der deutschen Nord- und Ostsee mit illustrierten Beispielen von unterschiedlich ausgeprägten Riffen enthalten die Anlage 2 (Nordsee) bzw. Anlage 3 (Ostsee).

Die Kartierung von Riffen stützt sich auf die Auswertung von Seitensichtsonar-Mosaiken nebst „Ground Truthing“ (Greiferproben und Videoprofile) sowie in bestimmten Fällen auf gängige, überwiegend videogestützte benthosbiologische Untersuchungsverfahren.

Das eingesetzte Seitensichtsonar soll im Frequenzbereich ab 300 kHz arbeiten. Basierend auf einem entsprechend hochauflösenden Mosaik erfolgt die Erfassung von Steinen/Blöcken und Restsedimenten mit Steinen und/oder Blöcken im Maßstab von mindestens 1:5.000. Alternativ kann auch der sogenannte „waterfall view“ der Prozessionssoftware genutzt werden.
3.1 Geogene Riffe - Typ „Steinfeld/Blockfeld Nordsee“

Dieser Rifftyp stellt in der deutschen Nordsee einen relativ seltenen Biotopkomplex dar. Die Erfassung und räumliche Abgrenzung erfolgt auf Grundlage hydroakustischer geowissenschaftlicher Methoden (Seitensichtsonar-Mosaik) und umfasst folgende Kriterien bzw. Parameter:

Kriterium 1: Die Mindestgröße von zu digitalisierenden Einzelsteinen orientiert sich an der aktuell kleinsten Erfassungsgröße für einzelne Objekte bei der Auswertung von Seitensichtsonar-Daten im Frequenzbereich ≥ 300 kHz (resultierende Steingröße ca. 30 - 50 cm). Derartige Einzelsteine oder Blöcke werden mit einem Radius von 75 m mit Pufferflächen umgeben und dargestellt.

Kriterium 2: Wenn der Abstand zwischen benachbarten Einzelsteinen (≥ ca. 30 - 50 cm) bzw. Blöcken ≤ 150 m ist, d. h. wenn sich ihre Pufferflächen entweder berühren oder überlappen, werden diese zu einer „Stein- bzw. Blockansammlung“ zusammengefasst (Abb. 3).

Kriterium 3: Wenn eine solche „Stein- bzw. Blockansammlung“ mindestens 21 Einzelsteine (≥ ca. 30 - 50 cm) bzw. Blöcke mit einem mittleren Abstand zu ihrem nächsten Nachbarn von ≤ 50 m enthält, bildet sie ein geogenes Riff vom Typ „Steinfeld/Blockfeld“ (Abb. 3).

Abb. 3: Die orangefarbenen „Steinansammlungen“ bilden ein geogenes Riff vom Typ „Steinfeld/Blockfeld (Nordsee)“, die gelben „Steinansammlungen“ und die mit Puffer umgebenen Einzelsteine dagegen nicht (Kriterium 3)

Kriterium 4: Falls sich innerhalb eines, alle vorhergehenden Kriterien (1 - 3) erfüllenden geogenen Riffs Bereiche ohne Stein- oder Blockvorkommen befinden, werden diese Bereiche der Gesamtfläche des Riffs zugeordnet (Abb. 4).
Abb. 4: In einem „Steinfeld“ eingeschlossene Flächen ohne Steinvorkommen (*) werden ebenfalls dem Riff zugeordnet (siehe Erläuterungen zu Kriterium 4)

3.2 Geogene Riffe - Typ „Blockfeld Ostsee“

Geogene Riffe des Typos „Blockfeld“ treten in der Ostsee vorwiegend im Bereich von Restsedimenten oder Geschiebemergelrücken auf und kommen häufiger als in der Nordsee vor. Dabei können die Größe der Blöcke und die Dichte der Blockvorkommen sehr unterschiedlich sein. Eine Erfassung von geogenen Riffen mittels Digitalisierung von Einzelblöcken ist deshalb aufwändiger als in der Nordsee und erfordert eine an die natürlichen Bedingungen angepasste Herangehensweise. Deshalb ist die Vorgabe für die Mindestgröße von Steinen und Blöcken im Rahmen der vorliegenden Kartieranleitung für die Ostsee nicht wie in der Nordsee ca. 30 - 50 cm Kantenlänge, sondern 50 cm, was in Anlehnung an Blott & Pye (2001), Blöcken entspricht.

Wie in der Nordsee erfolgt die Erfassung und räumliche Abgrenzung auf Grundlage hydroakustischer geowissenschaftlicher Methoden nach folgenden Vorgaben:

Kriterium 1: Die Mindestgröße von zu erfassenden Blöcken beträgt ≥ 50 cm (Kantenlänge). Derartige Blöcke werden digitalisiert und im GIS mit einem Radius von 7,5 m mit Pufferflächen umgeben und dargestellt.

Kriterium 2: Überlappende oder sich berührende Pufferflächen werden zu einer „Blockansammlung“ zusammengefasst.

Kriterium 3: Wenn eine solche „Blockansammlung“ mindestens 21 Blöcke aufweist, bildet sie unabhängig von ihrer Größe ein geogenes Riff vom Typ „Blockfeld“. Falls Stein- bzw. Blockpackungen so verdichtet sind, dass einzelne Blöcke im Seitensichtsonar-Mosaik nicht oder kaum voneinander zu unterscheiden sind und dabei offensichtlich mindestens 21 Blöcke aufweisen, ist in diesem Bereich die Erfassung einzelner Objekte nicht erforderlich. Derartige Vorkommen werden als Polygon abgegrenzt und stellen geogene Riffe vom Typ Blockfeld dar.

Kriterium 4: In dem Fall, dass sich innerhalb eines all vorhergehenden Kriterien (1 - 3) erfüllenden, geschlossenen „Blockfeldes“ Bereiche ohne Blockvorkommen befinden, werden diese Bereiche der Gesamtfläche des Riffs zugeordnet (Abb. 4).

Derartig abgegrenzte Polygone aus Blockfeldern entsprechen in der Ostsee geogenen Riffen. Dabei basieren die Kriterien nicht ausschließlich auf streng wissenschaftlich abgeleiteten Grundlagen, sondern beruhen auf Erfahrungen, die bereits in der Nordsee im Zuge von Genehmigungsverfahren erfolgreich waren.

Eine biologische Verifizierung dieses Typs geogener Riffe ist nicht erforderlich (Begründung siehe Kapitel 3.1 und 4.2).

14 Zum Vergleich: Nordsee 75 m
3.3 Geogene Riffe - Typ „Marine Findlinge“ Nord- und Ostsee

Im Untersuchungsgebiet erfasste erratische Blöcke, die eine Kantenlänge von mindestens 2 Metern aufweisen, sind geogene Riffe vom Typ „Marine Findlinge“ und werden als Punkte digitalisiert. Marine Findlinge weisen nahezu immer eine ausgeprägte epibenthische Besiedlung auf. Daher ist eine biologische Verifizierung dieses Typs geogener Riffe nicht erforderlich.

3.4 Geogene Riffe - Typ „Restsediment mit vereinzelten Steinen und/oder Blöcken“ in Nord- und Ostsee

Die Erfassung und räumliche Abgrenzung erfolgt auf Grundlage hydroakustischer geowissenschaftlicher Methoden (Seitensichtsonar-Mosaik) und umfasst folgende Kriterien bzw. Parameter:

- Restsedimente mit vereinzelten Steinen und/oder Blöcken werden anhand der Rück streumosaik e in Form von Polygonen auf Grundlage der Kartieranleitung des BSH (BSH 2016) abgegrenzt (Abb. 5)\(^{15}\) und die Mindestgröße der Polygone beträgt 1.000 m\(^2\).
- Die Dichte der Hartböden und damit die biologisch-funktionelle Bedeutung dieser Rest sedemente als Riff lassen sich allerdings allein basierend auf hydroakustischen Methoden nicht feststellen. Daher ist in solchen Flächen grundsätzlich eine Verifizierung mittels benthosbiologischer Untersuchungsmethoden (zum Beispiel Unterwasservideo) erforderlich.

Antragsteller in Zulassungsverfahren können allerdings zwischen zwei Optionen wählen:

- **Option 1:** Wenn eine anhand von eigenen oder BfN/BSH-Daten bereits als Polygon erfasste Riffverdachtsfläche (Restsediment mit vereinzelten Steinen und/oder Blöcken) vom Antragsteller als Riff akzeptiert wird, ist keine biologische Verifizierung mehr notwendig.
- **Option 2:** Wenn eine derartige Riff-Verdachtsfläche vom Antragsteller nicht als Riff akzeptiert wird, muss er eine biologische Verifizierung gemäß Kapitel 4. durchführen und die Verdachtsfläche als geogenes Riff darstellen, wenn diese den Kriterien für eine rifftypische Besiedlung entspricht.

\(^{15}\) Bei der Darstellung in einer großmaßstäbigen Karte im Maßstab 1:5.000 entsprechen 100 m in der Natur 2 cm auf der Karte.
Abb. 5: Beispiel für die Abgrenzung von Polygonen aus Restsedimenten mit vereinzelten Steinen und/oder Blöcken aus dem Schutzgebiet Sylter Außenriff (Quelle: BSH)
4 Kartieranleitung zur Erfassung rifftypischer Besiedlung des
gogenen Rifftyps „Restsediment mit vereinzelten Steinen
und/oder Blöcken“

4.1 Biologische Charakterisierung

Alle Riffe bieten Lebensraum für Arten des Aufwuchses und frei lebende Tierarten. Sie werden in der Regel von Arten besiedelt, die für Hartsubstrate typisch sind.

Bei typischen Riffbewohnern handelt es sich entweder um,

- sessile Arten des Makrozoo- und/oder Makrophytobenthos, die unmittelbar auf dem Substrat siedeln (geogene Riffe);
- sessile Arten des Makrozoo- und/oder -phytobenthos, die auf den primären Arten siedeln (zum Beispiel Seepocken auf Muscheln);
- vagile Riffarten, die die Strukturen und die erhöhte Produktivität des Biotopkomplexes nutzen (inklusive Fische) und/oder rifftypische Infauna des Makrozoobenthos oder Meiobenthos der Restsedimente.

4.2 Methodik zur Charakterisierung der rifftypischen Biota

Die biologische Charakterisierung erfolgt qualitativ mit Hilfe von Unterwasservideountersuchungen (siehe Kapitel 4.2.2).

4.2.1 Anleitung für Unterwasser-Videountersuchungen

Unterwasservideountersuchungen ermöglichen unter anderem die Grobbestimmung von eigenen Arten des Epibenthos und deren Zonierungen wie zum Beispiel die Ermittlung von Tiefenhorizonten von Makrophytenarten, aber auch die Erfassung von Miesmuschelbänken (biogene Riffe). In Bezug auf Arten der Infauna können nur Atem- und Wohnlöcher oder Kot-

16 In der AWZ der Nordsee kommen nach derzeitigem Kenntnisstand keine Makrophyten vor.

haufen (zum Beispiel von *Arenicola marina*) sowie über die Sedimentoberfläche hinausragende Röhren (zum Beispiel *Lanice conchilega*) erkannt werden.

Die Vorgehensweise zur biologischen Verifizierung besteht aus einem mehrstufigen Entscheidungsbaum, wobei die Kriterien eines biologisch charakterisierten Riffes auf jeder Stufe erfüllt sein können (Abb. 6).

Kriterium 1 fordert für die deutsche AWZ der Ostsee, dass in dem gesamten Videomaterial einer als Polygon abgegrenzten Restsedimentfläche mindestens 6 rifftypische Taxa aufgetroffen werden, für die AWZ der Nordsee dagegen 3 Arten (zur Erläuterung siehe Anlage 4). Sind die jeweiligen Kriterien erfüllt, handelt es sich um ein biologisch charakterisiertes geogenes Riff; sind sie nicht erfüllt, muss Kriterium 2 abgeprüft werden.

Kriterium 2 fordert für die deutsche AWZ der Nord- und Ostsee, dass die epibenthische Gemeinschaft auf dem Hartsubstrat wenigstens punktuell von bedeutenden Strukturbildnern geprägt ist, das heißt der Bedeckungsgrad einer oder kumulativ mehrerer strukturbildender Arten auf mindestens drei im Unterwasservideo sichtbaren Steinen bzw. Blöcken beträgt mindestens 50 % für Nord- und Ostsee. Ist dies der Fall, handelt es sich um ein biologisch charakterisiertes geogenes Riff, ist es nicht erfüllt, muss Kriterium 3 abgeprüft werden.

Kriterium 3 fordert für die deutsche AWZ, dass eine epibenthisch dominierte Gemeinschaft vorhanden ist, das heißt der Bedeckungsgrad mit sessilen epibenthischen Arten beträgt entlang eines Videotranseks in Anlehnung an die Trennregeln aus Fürhaupter et al. (2017) mind. 5 % (Nordsee) bzw. 10 % (Ostsee) des Meeresbodens innerhalb des als Restsediment abgegrenzten Polygons. Ist dies der Fall, handelt es sich um ein biologisch charakterisiertes geogenes Riff.

Wenn die Prüfung der Kriterien 1 - 3 ergeben hat, dass die Voraussetzungen für ein biologisch verifiziertes Riff nicht gegeben sind, wird diese Restsedimentfläche mit vereinzelten Steinen und/oder Blöcken nicht als Riff kartiert.
Abb. 6: Ablaufschema zur biologischen Charakterisierung von Riffen

Anlage 7 beinhaltet ein vereinfachtes Ablaufschema mit den Vorgaben zur Kartierung geogener Riffe.

4.2.2 Anleitung zur Erfassung charakteristischer Arten der Riffe

mit einer geschleppten Videokamera wird auch der Einsatz eines ROV zugelassen, zum Bei-
spiel wenn das Schiff nicht über DP verfügt und das ROV entsprechend leistungsstark ist.

Tab. 1: Untersuchung der Epifauna, Makrophyten und Biotopstruktur mit Unterwasservideo

<table>
<thead>
<tr>
<th>Methode</th>
</tr>
</thead>
</table>
| Umfang und Lage der Videotransekte richten sich primär nach der Größe und der Strukturvielfalt der abgegrenzten Restsedimentfläche (mindestens 1.000 m²). Die Transekte sind auf Basis der Seitensichtsonar-Mosaikte so zu planen (und zu dokumentieren), dass ein repräsentatives Korngrößenspekt-
rum und möglichst der vollständige Tiefengradient im Kernareal der abge-
grenzten Restsedimentfläche erfasst wird. Als Faustregel kann eine
Transektlänge von mindestens 0,1 sm Video pro 10.000 m² (etwa 5 Minuten bei 0, 6 - 0, 7 kn) in jeder erfassten Restsedimentfläche gelten. Bei großflä-
chigen Vorkommen sind UW-Videoaufnahmen von insgesamt 30 min Dauer
im Kernareal aufzuzeichnen. Die Videountersuchungen sind mit einer Ka-
mern (nach DIN EN 16260, Untersuchungstyp „Voruntersuchung“) durch-
zuführen, wobei Stationsnummer, GPS-Daten, Datum/Uhrzeit und
Wassertiefe in das Bild einzublenden sind. Hierbei ist der Versatz („layback“)
der Schleppkamera hinter dem Schiff bzw. seitlich des Schiffes relativ zur
Satellitenantenne so genau wie möglich zu protokollieren und einzurechnen
(wenn nicht unter Einsatz eines Unterwasserpositionierungssystems automa-
tisch korrigiert).

Eine Größenskalierung des zentralen Bildausschnitts muss durch im Abstand geeichte Laser ermöglicht werden.

In der Ostsee müssen derartige Untersuchungen im Sommer stattfinden, um
Makrophyten erfassen zu können, für die Nordsee können die Untersuchun-
gen von Frühling bis Herbst ausgedehnt werden.

<table>
<thead>
<tr>
<th>Untersuchungsrahmen und Darstellung der Ergebnisse</th>
</tr>
</thead>
</table>
| Die Darstellung erfolgt in Protokollform, wobei positionsgenau Nachweise von charakteristischen Arten aus Anlage 4 gemäß den Kriterien in Kapitel 4.2.1 und Abb. 6 festgehalten werden. Ergänzend erfolgt eine Be-
schreibung der Epifauna, des Makrophytobenthos und der Biotopstruktur durch die exemplarische Darstellung von:

- Vorkommen/Häufigkeiten von Strukturelementen (zum Beispiel Steine, Schilfzüchter etc.);
- Häufigkeit von Epifauna (geschätzter Bedeckungsgrad in Prozent);
- Vorkommen/Häufigkeiten von Makrophyten (nach HELCOM Guidelines „Monitoring of phytobenthic plant and animal communities“);
- markanten Strukturen (zum Beispiel Geschiebemergelrücken, biogenes Riff);
- Erkennbare Störungen der Sedimentoberfläche (zum Beispiel Fischerei-
spuren).

18 Wenn ein biogenes Riff erfasst wird, ist dieses gem. Vorgaben in Kapitel 5 zu kartieren.
Für die Videoaufnahmen ist ein repräsentativer Zusammenschnitt der einzelnen Transekte und gegebenenfalls auftretender Besonderheiten zu erstellen. Alle Ergebnisse werden als Attributdaten anschließend zusammen mit den GPS-Koordinaten in GIS-Shapefiles überführt sowie in Form von Karten mit eindeutiger Legende dargestellt.

Es ist zu beachten, dass sich methodisch bedingte Fehler, zum Beispiel bei der Ermittlung der Artenzahl und bei der Einschätzung des Bedeckungsgrades von Riffvorkommen, nicht immer vermeiden lassen, aber durch genaue Vorgaben zum Beprobungsumfang und zu den Erhebungsbedingungen minimiert werden können.

Darüber hinaus richten sich die Erhebungsbedingungen an DIN EN 1626019 aus und betreffen unter anderem bestimmte Sichtbedingungen und Kamerasysteme sowie die Aufnahme mehrerer Standbilder während der Aufnahme eines Videotranseks.

19 „Visuelle Meeresbodenuntersuchungen mittels ferngesteuerter Geräte und/oder Schleppgeräten zur Erhebung von Umweltdata“
5 Kartieranleitung für biogene Riffe

1. Schritt: Seitensichtsonaraufnahmen

2. Schritt: Verifizierung mit Unterwasservideokamera

Die Verifizierung von den voreidentifizierten sublittoralen Muschelbänken erfolgt durch eine Unterwasservideokamera, die an der lokalisierten Position herabgelassen wird (Dropvideo).

3. Schritt: Überprüfung, ob die Muschelbank ein biogenes Riff darstellt

Hat das Dropvideo in Schritt 2 das Vorhandensein einer Muschelbank bestätigt, wird eine genaue Verifizierung mittels Unterwasservideoprofilen vorgenommen, die sich an folgenden Vorgaben orientiert:

Die notwendige Fahrtstrecke ergibt sich aus der Ausdehnung der Muschelbank und die Schleppgeschwindigkeit (Fahrtgeschwindigkeit) sollte 1 kn (Richtwert) nicht überschreiten.

Zur Einordnung von Muschelbänken als validierter LRT Riffe (Code 1170) bzw. als geschütztes Biotop im Sinne § 30 BNatSchG gelten dabei folgende Vorgaben, deren Verifizierung überwiegend mit Hilfe des Kontrollbildschirms erfolgt:

- Derartige Riffe müssen gemäß Interpretationshandbuch vom Meeresbodenrelief unterscheidbar sein und die Bodenoberfläche überragen, das heißt biogene Muschelriffe sind mehrschichtig und enthalten deshalb in ihrem Kern mehrjährige Muscheln (2 - 3 Jahrgänge) mit einem Bedeckungsgrad von nahezu 100 %, der sich zu den Rändern hin stark ausdünnen kann (in Anlehnung an die Trennregeln aus Fürhaupter et al. (2017) bis 5 % in der Nordsee und 10 % in der Ostsee).

- Sie dürfen nicht von flüchtiger Existenz sein.

- Das Muschelriff muss eine Mindestgröße von 100 m² haben oder eine Ausdehnung entlang der längsten Achse von mindestens 25 m aufweisen (Erfassungsmaßstab ca. 1:1.000).

Die Ergebnisse der Verifizierung werden schriftlich unter Einbindung von Standbildern dokumentiert.

4. Schritt: Abgrenzung anhand des Seitensichtsonarmosaiks

Die Abgrenzung von den verifizierten Muschelbänken erfolgt anhand der Seitensichtsonarmosaik in Polygonform. Die Polygone werden digitalisiert (GIS-Shape files).

Wenn der Abstand zwischen einzelnen Muschelbänken geringer als 25 m ist, werden die Vorkommen als zusammengehöriges Riff gewertet (vergleiche Essink et al. 2005).
Quellenangaben:

BIOCONSULT (2013): Arbeitshypothese zur Abgrenzung des FFH-LRT/§30 Biotoptyps Riff im Zusammenhang mit Trassenplanungen durch TenneT Offshore in der AWZ der Nordsee.20

23 http://www.gpdn.de
24 http://dx.doi.org/10.1371/journal.pone.0109261

\(^{25}\) https://www.lung.mv-regierung.de/dateien/ffh_sb_lrt_1170.pdf

\(^{26}\) Auf www.wwf.de/watt/fischerei als pdf-Download verfügbar

\(^{27}\) www.bsh.de/de/Produkte/Karten/Geologische_Karten/index.jsp
1170 Reefs/Riffe

1. Definition of the habitat

Reefs can be either biogenic concretions or of geogenic origin. They are hard compact substrata on solid and soft bottoms, which arise from the sea floor in the sublittoral and littoral zone. Reefs may support a zonation of benthic communities of algae and animal species as well as concretions and corallogenic concretions.

1. Definition des Lebensraumtyps

Riffe bestehen entweder aus biogenen Konkretionen oder sind geogenen Ursprungs. Es handelt sich um Hartsubstrate auf festem und weichem Untergrund, die in der sublitoralen und litoralen Zone vom Meeresboden aufragen. Sie können sowohl eine Zonierung von benthischen Algen- und Tiergemeinschaften als auch von korallenogenen und anderen Aggregativen aufweisen.

Clarifications/Klarstellungen:

- "Hard compact substrata" are: rocks (including soft rock, e.g. chalk), boulders and cobbles (generally > 64 mm in diameter).
 - Bei "Hartsubstrat" handelt es sich um: Felsen (einschließlich „weichem“ Festgestein wie zum Beispiel Kreidefelsen), Felsblöcke und Geröll (in der Regel > 64 mm Durchmesser).
- "Biogenic concretions" are defined as: concretions, encrustations, corallogenic concretions and bivalve mussel beds originating from dead or living animals, i.e. biogenic hard bottoms which supply habitats for epibiotic species.
 - "Biogene Verwachsungen" umfassen: Verwachsungen, Verkrustungen, Korallenformationen oder Muschel(schalen)bänke aus toten oder lebenden Tieren, das heißt biogene Hartsubstrate, die Lebensräume für epibenthische Arten bereitstellen.
- "Geogenic origin" means: reefs formed by non-biogenic substrata.
 - "Geogener Ursprung" bedeutet: Riffe, die aus nicht biogenen Substraten aufgebaut sind.
- "Arise from the sea floor" means: the reef is topographically distinct from the surrounding seafloor.
 - "Vom Meeresboden aufragend“ heißt: Das Riff unterscheidet sich topografisch vom umgebenden Meeresboden.
- "Sublittoral and littoral zone" means: the reefs may extend from the sublittoral uninterrupted into the intertidal (littoral) zone or may only occur in the sublittoral zone, including deep water areas such as the bathyal.
 - "sublitorale und litorale Zone“ bedeutet: Die Riffe können sich aus der sublitoralen Zone ohne Unterbrechung in die (litorale) Tidenzone erstrecken oder nur in der sublitoralen Zone vorkommen, die auch Tiefseegebiete wie das Bathyal umfasst.

- Such hard substrata that are covered by a thin and mobile veneer of sediment are classed as reefs if the associated biota are dependent on the hard substratum rather than the overlying sediment.

- Where an uninterrupted zonation of sublittoral and littoral communities exists, the integrity of the ecological unit should be respected in the selection of sites.

A variety of subtidal topographic features are included in this habitat complex such as: Hydrothermal vent habitats, sea mounts, vertical rock walls, horizontal ledges, overhangs, pinnacles, gullies, ridges, sloping or flat bed rock, broken rock and boulder and cobble fields.

- **Examples for typical reef species**

 2. **Beispiele für typische (charakteristische) Riffbewohner**

 2.1 **Reefvegetation:**

 North Atlantic including North Sea and Baltic Sea:

 A large variety of red, brown and green algae (some living on the leaves of other algae).

 2.1 **Riffvegetation:**

 Nordatlantik mit Nord- und Ostsee:

 Eine große Vielfalt an Rot-, Braun- und Grünalgen (einige siedeln auf den Thalli anderer Algen).

 2.2. **Examples for typical reef animals:**

 2.2.1 **Examples for animals forming biogenic reefs:**

 North Atlantic including North Sea:

 Polychaetes (e.g. *Sabellaria spinulosa*, *Sabellaria alveolata*, *Serpula vermicularis*), bivalves (e.g. *Modiolus modiolus*, *Mytilus* sp.) and cold water corals (e.g. *Lophelia pertusa*).

 29 Auszug von nur für die Nord- bzw. Ostsee relevanten Beispielen
2.2 **Beispiele für typische Rifftiere:**

2.2.1 Beispiele für Tiere als biogene Riffbildner:

Nordatlantik unter Einbeziehung der Nordsee:

Polychaeten (zum Beispiel Sabellaria spinulosa, Sabellaria alveolata, Serpula vermicularis), Muscheln (zum Beispiel Modiolus modiolus, Mytilus sp.) und Kaltwasserkorallen (zum Beispiel Lophelia pertusa).

Baltic Sea: Bivalves (zum Beispiel Modiolus modiolus, Mytilus sp., Dreissena polymorpha).

Ostsee: Muscheln (zum Beispiel Mytilus sp., Dreissena polymorpha).

2.2.2 Examples for non reef forming animals:

North Atlantic including North Sea:

In general sessile invertebrates specialized on hard marine substrates such as sponges, anthozoa or cnidaria, bryozoans, polychaetes, hydroids, ascidians, molluscs and cirripedia (barnacles) as well as diverse mobile species of crustaceans and fish.

2.2.2 Beispiele für nicht Riff bildende Tiere:

Nordatlantik unter Einbeziehung der Nordsee:

In der Regel handelt es sich um sessile Invertebraten, die auf marine Hartsubstrate spezialisiert sind, wie zum Beispiel: Schwämme, Cnidaria (zum Beispiel Blumentiere, Moostierchen), Polychaeten, Hydroidpolypen, Manteltiere, Schalentiere sowie Seepocken und darüber hinaus verschiedene mobile Krebsarten und Fische.

Baltic Sea: Distribution and abundance of invertebrate species settling on hard substrates are limited by the salinity gradient from west to east. Typical groups are: hydroids, ascidians, cirripedia (barnacles), bryozoans and molluscs as well as diverse mobile species of crustaceans and fish.

Ostsee: Die Verteilung und die Abundanz von Invertebraten, die auf marinen Hartsubstraten siedeln, sind entsprechend des Salzgehaltsgradienten von West nach Ost limitiert. Typische Gruppen sind: Hydroidpolypen, Ascidien, Cirripedia (Seepocken), Bryozoa, sowie Mollusken und darüber hinaus verschiedene mobile Krebsarten und Fische.

3. Corresponding categories

Für die Auflistung der korrespondierenden Biotoptypen aus nationalen und internationalen Biotopklassifikationen wird auf die jeweils gültige Version des Interpretation Manuals verwiesen (derzeit Version EUR 28 von 2013), wobei darauf hingewiesen wird, dass die dort aufgeführten Biotoptypenklassen für die deutsche Nord- und Ostsee nicht mehr aktuell sind.
Anlage 2

Naturräumliche Gegebenheiten der deutschen Nordsee und Beispiele für Riffvorkommen in der AWZ

Im Zuge der quartären Klimaänderungen wurde der Bereich der Deutschen Bucht abwechselnd durch glaziale, glazifluviale, periglaziale, terrestrische und marine Bedingungen geprägt. Insofern lassen sich Strukturen und Ablagerungen sowohl des Pleistozäns als auch des Holozäns auf dem heutigen Meeresboden nachweisen. Es sind zum Teil bereits aufgearbeitete und mobilisierte Sedimente und Relikte saalezeitlicher Moränen.

Weite Bereiche der AWZ der deutschen Nordsee, besonders das Elbeurstromtal und die westlich daran anschließenden Gebiete, weisen unterschiedlich mächtige feine, zum Teil schlackige Lockersedimente als Resultat holozäner Sedimentation auf und sind rezent nach derzeitigem Kenntnisstand weitgehend frei von Riffen.

Charakterisierung von in der deutschen AWZ der Nordsee bekannten Gebieten mit Riffvorkommen

Abb. 8 illustriert nicht nur die Heterogenität der Sedimente in den Gebieten Borkum Riffgrund und Sylter Außenriff sehr anschaulich, sondern auch, wie sich dort Habitate mit größeren Sedimenten (rot bis schwarz) deutlich aus der überwiegend durch Feinsand charakterisierten deutschen Nordsee hervorheben (Rachor & Nehmer 2003).
Borkum Riffgrund

Der als nordwestliche Fortsetzung der saalezeitlichen oldenburgisch-ostfriesischen Grundmoräne anzusehende Borkum Riffgrund hebt sich schon auf älteren Sedimentkarten (zum Beispiel Jarke 1956, Figge 1981) durch seine Vielgestaltigkeit sehr deutlich aus seiner zu- meist feinsandigen Umgebung hervor (Rachor & Nehmer 2003), dies wird auch durch die Karte der EUNIS-Habitate bestätigt (Abb. 8). Er erreicht im Norden eine maximale Tiefe von 33 m.

Der Borkum Riffgrund kann zu großen Teilen dem FFH-Lebensraumtyp Sandbänke (Code 1110) zugeordnet werden und zeigt eine besonders hohe Arten- und Biotopvielfalt in teilweise außerordentlich kleinräumigen mosaikartigen Assoziationen mit dem FFH-Lebensraumtyp Riffe bei stellenweise hoher Sedimentdynamik.

Abb. 9: Geogenes Riff vom Typ „Mariner Findling“ auf dem Borkum Riffgrund mit dichter Besiedlung von Seenelken (*Metridium senile*) (Quelle: BfN)
Sylter Außenriff

Das Sylter Außenriff befindet sich in ca. 22 - 125 km Entfernung westlich der Küste Sylts. Die Wassertiefen erreichen ca. 45 m (Schwarzer & Diesing 2006).

Teile des Gebietes sind von einer stark ausgeprägten Morphodynamik gekennzeichnet. Die Steine und die auf ihnen siedelnden rifftypischen Arten, insbesondere Metridium senile, sind teilweise von einer dünnen Schicht feiner Sedimente um- bzw. überlagert. Dies deutet darauf hin, dass Riffstrukturen auch unterhalb mobiler Sedimente verbreitet sind und nur dort an der Meeresbodenoberfläche sichtbar werden, wo „Fenster“ in der oberflächlichen Decke vorhanden sind. Im Zuge der Sandwanderungen am Meeresboden können derartig übersandete Riffe wieder freigelegt werden (Diesing & Schwarzer 2002). Steine, die dicht mit einer hartsubstrat-typischen Epifauna wie zum Beispiel Sertularia cupressina, Metridium senile,

Abb. 11: Ausschnitt von dicht mit unter anderem Seeigeln (Echinus esculentus) und Seeanemonen (Metridium senile, links) sowie Toter Mannshand (Alcyonium digitatum, rechts) besiedelten geogenen Riffen (Quelle: BfN)
Anlage 3

Naturräumliche Gegebenheiten der deutschen Ostsee und Beispiele für Riffvorkommen in der AWZ

1. Beltsee, westlich (α-mesohalin) der Darßer Schwelle;
2. Ostsee, östlich (β-mesohalin) der Darßer Schwelle;
3. polyhalin geschichteter Wasserkörper der Becken und Rinnen (Kieler, Mecklenburger Bucht, Kadetrinne, Arkonabecken).

Auf dem Meeresgrund der Becken und Rinnen lagern sich teilweise mächtige Schlickschichten ab (Schwarzer & Diesing 2006).

Fehmarnbelt

Der Fehmarnbelt befindet sich zwischen den Inseln Fehmarn und Lolland. Die Wassertiefen bewegen sich zwischen 10 und 40 m. Zentrale morphologische Struktur ist die west-ost verlaufende Fehmarnbelt-Rinne, durch die ca. 70 % des Wasseraustausches zwischen Nord- und Ostsee erfolgt. Die Sedimentverteilung und die benthischen Lebensgemeinschaften im Bereich des Fehmarnbelts entsprechen in etwa den Mustern wie sie auch in der Kieler- und Mecklenburger Bucht anzutreffen sind. Die Schorre um die Insel Fehmarn ist überwiegend

Abb. 12: Rotalgenbewuchs sowie Tange auf einem geogenen Riff vom Typ „Restsediment mit vereinzelten Steinen und/oder Blöcken“ im photischen Bereich des Fehmarnbelts (Quelle: IOW)

Abb. 13: Übergang von Rotalgen-dominierten Bereichen zu epibenthischen Gemeinschaften aus Seescheiden und Schwämmen (links); Steine und Blöcke im aphotischen Bereich, besiedelt von Schwämmen und Anemonen (Quellen: IOW)

Darßer Schwelle/Kadetrinne

Die Darßer Schwelle ist ein submariner Geschiebemergelrücken zwischen den dänischen Inseln Falster und Mön sowie der deutschen Halbinsel Fischland/Darß, der die Beltsee von der Arkonasee bzw. der eigentlichen Ostsee trennt. Die Kadetrinne durchbricht die Darßer

Abb. 14: Sukzession der Lebensgemeinschaften auf den Hartböden in der Kadetrinne: Rotalgenaufwuchs (oben links); Miesmuscheln (oben rechts); Polychaeten und Seescheiden (unten links); Keine epibenthische Makrobenthosgemeinschaft zu erkennen (unten rechts) (Quellen: IOW)
Kriegers Flak

Adlergrund und Westliche Rönnebank

In den Flachwasserzonen besiedeln bis etwa 10 m Tiefe häufig „Makrophytenwälder“ aus Großalgen wie Sägetang, Meersaite und Gabeltang die Riffe (Abb. 15, Gosselck et al. 1998).

Besonders im Sommer überdecken fädige Braunalgen wie *Ectocarpus* spp. den Meeresgrund, wobei sie sich auch auf anderen epibenthischen Arten festheften (Abb. 16).

Abb. 17: Fische nutzen das Riff als Rückzugsraum
Anlage 4

Rifftypische, mit Videoschlepptechnik erfassbare Taxa des epibenthischen Makrozoobenthos in Nord- und Ostsee

Nach der Abgrenzung von Polygonen des Typs „Restsediment mit vereinzelten Steinen und/oder Blöcken“ in der deutschen AWZ von Nord- und Ostsee werden diese zur biologischen Verifizierung anhand der Vorgaben in Kapitel 4.2.2 (Anleitung zur Erfassung charakteristischer Arten der Riffe) beprobt. Für die Erfüllung des Kriteriums 1 (Kapitel 4.2.1) zur biologischen Verifizierung geogener Riffe wird für die deutsche AWZ gefordert:

- Ostsee: in dem gesamten Videotransektmaterial eines entsprechenden Polygons müssen mindestens 6 rifftypische Taxa angetroffen werden;
- Nordsee: in dem gesamten Videotransektmaterial eines entsprechenden Polygons müssen mindestens 3 rifftypische Taxa angetroffen werden.

Die zur biologischen Verifizierung vorliegenden aktuellen Listen für Nord- und Ostsee stellen eine Auswahl der rifftypischen Taxa dar, die mit der für die Kartierung vorgeschlagenen Methode (Videotransekte) stetig zu erfassen sind (Tabellen 2 und 3).

Nachstehend wird näher begründet, warum für beide Meeresgebiete unterschiedliche Anzahlen rifftypischer Taxa für die Erfüllung des Kriteriums 1 vorgegeben werden.

<table>
<thead>
<tr>
<th>Tax. Gruppe</th>
<th>Beispiele für eingeschlossene Taxa (häufigste Vertreter)</th>
<th>Kriterium 1</th>
<th>Kriterium 2</th>
<th>Kriterium 3</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sessiles Zoobenthos</td>
<td></td>
<td>rifftypische Taxa</td>
<td>Bedeutende Strukturbildner</td>
<td>sessiles Epibenthos</td>
<td></td>
</tr>
<tr>
<td>Schwämme</td>
<td>Halichondria panicea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hydro-Polypen</td>
<td>Hydractinia spp., Sertularia cupressina</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Blumentiere</td>
<td>Alcyonium digitatum, Metridium senile</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>keine Mehrfachzählung bei Vorkommen mehrerer Arten</td>
</tr>
<tr>
<td>Kalkröhrenwürmer</td>
<td>Spirobranchus giganteus, Pomatoceros triqueter</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>keine Mehrfachzählung bei Vorkommen mehrerer Arten</td>
</tr>
<tr>
<td>andere Borstenwürmer</td>
<td>Chaetopterus variopedatus, Lanice conchilega, Owenia fusiformis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>ausschließlich auf Weichboden</td>
</tr>
<tr>
<td>Seepocken</td>
<td>Balanus balanus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blättermoos-tierchen</td>
<td>Flustra foliacea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>andere Moostierchen</td>
<td>Electra pilosa, Membranipora sp.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manteltiere</td>
<td>Ascidia aspera, Ascidia scabra</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>auch auf Weichboden, daher kein charakteristisches Taxon gemäß Kriterium 1</td>
</tr>
<tr>
<td>mobile Begleitarten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Großschnecken</td>
<td>Buccinum undatum, Crepidula fornicata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Großkrebs</td>
<td>Cancer pagurus, Pagurus bernhardus</td>
<td>x</td>
<td></td>
<td></td>
<td>andere Großkrebs wie Schwimmskabben (Liocarcinus spp.) und Maskenkrabbe (Coryphos cassiolveraunus) werden hier nicht als charakteristische Riffarten gezählt</td>
</tr>
<tr>
<td>Tax. Gruppe</td>
<td>charakteristische Taxa</td>
<td>Kriterium 1</td>
<td>Kriterium 2</td>
<td>Kriterium 3</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Phytal</td>
<td>Mehrjährige, blattförmige Rotalgen</td>
<td>Delesseria sanguinea, Phycodrys spp., Coccotylus spp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zuckertang</td>
<td>Saccharina, Laminaria</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Säge- und Blasentang</td>
<td>Fucus spp.</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gabeltang</td>
<td>Furcellaria lumbricalis</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>fädige Algen</td>
<td>Ectocarpus, Polysiphonia u.a.</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>sessiles Zoobenthos</td>
<td>Schwämme</td>
<td>Geweihschwamm (Halichona oculata)</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Schwämme</td>
<td>Halichondria, Polymastia, Geweihschwamm (Halichona oculata), u.a.</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Blätter-Moostierchen</td>
<td>Flustra foliacea</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Miesmuscheln</td>
<td>Mytilidae</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe</td>
<td>Arten</td>
<td>Einlagige, lagestable Bestände</td>
<td>Hydro-Polypen</td>
<td>Blumentiere</td>
<td>keine Mehrfachzählung bei Vorkommen mehrerer Arten</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Miesmuscheln</td>
<td>Mytilidae</td>
<td>x</td>
<td>Sertularia cupressina, Hartlaubella gelatinosa</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydro-Polypen</td>
<td>Sertularia cupressina,</td>
<td>x</td>
<td>Hartlaubella gelatinosa</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Blumentiere</td>
<td>Metridium senile, Actinia,</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Urticina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalkröhrenwürmer</td>
<td>Spirorbidae</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Seepocken</td>
<td>Balanus crenatus, Amphibalanus impovisus</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Schlauchseescheide</td>
<td>Ciona intestinalis</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>andere Manteltiere</td>
<td>Dendrodoa grossularia,</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Molgula spp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobile Begleitarten</td>
<td>Buccinum, Neptunea antiqua</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Großschnecken</td>
<td>Carcinus maenas, Pagurus bernhardus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Großkrebsen</td>
<td>Carcinus maenas,</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Pagurus bernhardus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fische</td>
<td>Klippenbarsch (Ctenolabrus rupestris), Aalmutter (Zoarces viviparum), Dorsch (Gadus morhua), Seehase (Cyclopterus lumpus), Butterfisch (Pholis gunellus), Großer Scheibenbauch (Liparis liparis), Steinbutt (Psetta maxima)</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gesamt</td>
<td>17</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anlage 5
Potenziell riffbildende (korrespondierende) Biotoptypen der deutschen Nord- und Ostsee (Küstenmeer und AWZ)

Potenziell riffbildende Biotoptypen (biogen und geogen) nach der Standard-Biotoptypenliste im Küstenmeer und der AWZ (Fürhapter et al. 2017) sind korrespondierende Biotoptypen für Riffe. In der aktuellen Roten Liste der gefährdeten Biotoptypen Deutschlands finden sich zudem umfangreiche Zusatzinformationen (Definitionstext, diagnostische Arten, Gefährdung, Schutzstatus etc.) und die spezifischen Trennrregeln.

Tab. 4: Potenziell riffbildende (korrespondierende) Biotoptypen der deutschen Nord- und Ostsee

<table>
<thead>
<tr>
<th>CODEs der Biotoptypen</th>
<th>FFH-LRT eindeutig(^{32})</th>
<th>FFH-LRT unklar(^{33})</th>
<th>BIOTOPTYP</th>
<th>RLD(^{34})</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.01.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee (Felswatt) - ausschließlich bei Helgoland</td>
<td>3</td>
</tr>
<tr>
<td>02.01.01.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit Epibenthos</td>
<td>3</td>
</tr>
<tr>
<td>02.01.01.01.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit mehrjährigen (festsitzenden) Makroalgen, vor allem Fucus</td>
<td>3</td>
</tr>
<tr>
<td>02.01.01.01.01.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit epibenthischen Muscheln (Bivalvia)</td>
<td>2</td>
</tr>
<tr>
<td>02.01.01.01.01.02.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.01.01.01.02.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit Miesmuscheln (Mytilus edulis)</td>
<td>2</td>
</tr>
<tr>
<td>02.01.01.01.01.03</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit einjährigen (festsitzenden) Makroalgen, vor allem Meersalat (Ulva)</td>
<td>*</td>
</tr>
<tr>
<td>02.01.01.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Felsen- und Steingrund der Nordsee mit vereinzeltem Epibenthos, Weidegängern oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>02.01.01.02.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schillgrund der Nordsee - ausschließlich Wattenmeer und Ästuare</td>
<td>1</td>
</tr>
<tr>
<td>02.01.01.02.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schillgrund der Nordsee mit Epibenthos</td>
<td>1</td>
</tr>
<tr>
<td>02.01.01.02.01.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schillgrund der Nordsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia)</td>
<td>1</td>
</tr>
<tr>
<td>02.01.01.02.01.02.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schillgrund der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.01.01.02.01.02.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schillgrund der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus)</td>
<td>1</td>
</tr>
<tr>
<td>02.01.04</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Sandgrund der Nordsee (Sandwatt) - ausschließlich Wattenmeer und Ästuare</td>
<td>V</td>
</tr>
<tr>
<td>02.01.04.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Sandgrund der Nordsee mit Epibenthos</td>
<td>3</td>
</tr>
<tr>
<td>02.01.04.01.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Sandgrund der Nordsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia)</td>
<td>1</td>
</tr>
<tr>
<td>02.01.04.01.02.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Sandgrund der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.01.04.01.02.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Sandgrund der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus edulis)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{32}\) „Eindeutig“ bedeutet, dass der Biotoptyp immer Bestandteil eines Riffs ist.

\(^{33}\) „Unklar“ bedeutet, dass der Biotoptyp Bestandteil eines Riffs sein kann, aber nicht immer ist.

\(^{34}\) RLD bezieht sich auf die Gefährdungskategorien der dt. Roten Liste Biotope in Finck et al. (2017).
<table>
<thead>
<tr>
<th>CODEs der Biotoptypen</th>
<th>FFH-LRT eindeutig</th>
<th>FFH-LRT unklar</th>
<th>BIOTOPTYP</th>
<th>RLD³⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.01.05</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schlickgrund der Nordsee (Schlick- und Mischwatt) - ausschließlich Wattenmeer und Ästuare</td>
<td>3–V</td>
</tr>
<tr>
<td>02.01.05.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schlickgrund der Nordsee mit Epibenthos</td>
<td>3</td>
</tr>
<tr>
<td>02.01.05.01.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schlickgrund der Nordsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia)</td>
<td>1</td>
</tr>
<tr>
<td>02.01.05.01.02.01</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schlickgrund der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.01.05.01.02.02</td>
<td>1170</td>
<td></td>
<td>Eulitoraler Schlickgrund der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus edulis)</td>
<td>1</td>
</tr>
<tr>
<td>02.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee - vorwiegend Helgoland</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Epibenthos</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit mehrjährigen (festsitzenden) Makroalgen</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.01.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Fucus</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Laminaria saccharina</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.01.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit mehrjährigen, blattförmigen Rotalgen (Delesseria sanguinea, Halarachnion ligulatum, Phycodrys rubens, Phyllophora spp.)</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit epibenthischen Muscheln</td>
<td>0</td>
</tr>
<tr>
<td>02.02.01.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Europäischen Austern (Ostrea edulis)</td>
<td>0</td>
</tr>
<tr>
<td>02.02.01.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.02.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Moostierchen (Bryozoa), vor allem Blätter-Moostierchen (Flustridae)</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Nesseltieren (Cnidaria)</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.04.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Blumentieren (Anthozoa)</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.04.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Felsen- und Steingrund der Nordsee mit Hydroidpolypen (Hydrozoa), zum Beispiel "Seemoos"</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Schwämmen (Porifera)</td>
<td>3</td>
</tr>
<tr>
<td>02.02.01.01.06</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit Seescheiden (Asciacea)</td>
<td>3</td>
</tr>
<tr>
<td>CODEs der Biotopytens</td>
<td>FFH-LRT eindeutig</td>
<td>FFH-LRT unklar</td>
<td>BIOTOPTYP</td>
<td>RLD^34</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>02.02.01.01.07</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>02.02.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Nordsee mit vereinzeltem Epibenthos, Weidegängern oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>02.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, aufragender Geschiebemergel/-Kleigrund der Nordsee - vorwiegend an exponierten Küstenabschnitten</td>
<td>?</td>
</tr>
<tr>
<td>02.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Geschiebemergel/-Kleigrund der Nordsee - vorwiegend an exponierten Küstenabschnitten</td>
<td>?</td>
</tr>
<tr>
<td>02.02.04</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.04.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee mit Epibenthos</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Epibenthos</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit mehrjährigen (festsitzenden) Makroalgen - ausschließlich Helgoland</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.06.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Fucus</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.06.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Laminaria saccharina</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.06.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit mehrjährigen, blattförmigen Rotalgen (Delesseria sanguinea, Halarachnion ligulatum, Phycodrys rubens, Phyllophora spp.)</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.06.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit epibenthischen Muscheln</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Europäischen Austern (Ostrea edulis)</td>
<td>0</td>
</tr>
<tr>
<td>02.02.06.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Pazifischen Austern (Crassostrea gigas)</td>
<td>#</td>
</tr>
<tr>
<td>02.02.06.01.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Miesmuscheln (Mytilus edulis)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit epibenthischen Viehborstern, vor allem"Sandkoralle" (Sabellaria) - vorwiegend Wattenmeer</td>
<td>0</td>
</tr>
<tr>
<td>02.02.06.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Moostieren (Bryozoa), vor allem Blätter-Moostieren (Flustridae) - nur offene Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Nesseltieren (Cnidaria)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.05.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Blumentieren (Anthozoa) - nur offene Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.05.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Hydrooidopolyphen (Hydrozoa), z. B. "Seemoos"</td>
<td>2</td>
</tr>
<tr>
<td>CODEs der BiotopTypen</td>
<td>FFH-LRT eindeutig</td>
<td>FFH-LRT unklar</td>
<td>BIOTOPTYP</td>
<td>RLD</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>02.02.06.01.06</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Schwämmen (Porifera) - nur offene Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.07</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit Seescheiden (Ascidiacea) - nur offene Nordsee</td>
<td>2</td>
</tr>
<tr>
<td>02.02.06.01.08</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>02.02.06.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Nordsee mit vereinzeltm Epibenthos, Weidegängern oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>02.02.08</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee</td>
<td>2–3</td>
</tr>
<tr>
<td>02.02.08.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit Epibenthos</td>
<td>2</td>
</tr>
<tr>
<td>02.02.08.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit Nesseltieren (Cnidaria), vor allem "Seemoos"</td>
<td>2</td>
</tr>
<tr>
<td>02.02.10</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.10.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit Epibenthos</td>
<td>2</td>
</tr>
<tr>
<td>02.02.10.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit epibenthischen Vielborstern, vor allem "Sandkoralle" (Sabellaria) (biogenes Riff) - vorwiegend Wattenmeer</td>
<td>0</td>
</tr>
<tr>
<td>05.01.01</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee</td>
<td>*</td>
</tr>
<tr>
<td>05.01.01.01</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee mit Epibenthos</td>
<td>*</td>
</tr>
<tr>
<td>05.01.01.01.01</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee mit mehrjährigen (festsitzenden) Makroalgen, vor allem Fucus vesiculosus</td>
<td>2–3</td>
</tr>
<tr>
<td>05.01.01.01.02</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee mit epibenthischen Krebsen (Crustacea), vor allem Seepocken (Balanidae)</td>
<td>*</td>
</tr>
<tr>
<td>05.01.01.01.03</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>05.01.01.02</td>
<td>1170</td>
<td></td>
<td>Hydrolitoraler Felsen- und Steingrund der Ostsee mit vereinzeltm Epibenthos oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>05.01.03</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee</td>
<td>*</td>
</tr>
<tr>
<td>05.01.03.01</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit Epibenthos</td>
<td>*</td>
</tr>
<tr>
<td>05.01.03.01.01</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit wurzelnden Pflanzen - überwiegend in flachen Buchten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>2</td>
</tr>
<tr>
<td>05.01.03.01.02</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit mehrjährigen (festsitzenden) Makroalgen, vor allem Fucus vesiculosus</td>
<td>2–3</td>
</tr>
<tr>
<td>CODEs der Biotoptypen</td>
<td>FFH-LRT eindeutig32</td>
<td>FFH-LRT unklar33</td>
<td>BIOTOPTYP</td>
<td>RLD34</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>05.01.03.01.03</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit epibenthischen Krebsen (Crustacea), vor allem Seepocken (Balanidae)</td>
<td>*</td>
</tr>
<tr>
<td>05.01.03.01.04</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>05.01.03.02</td>
<td>1170</td>
<td></td>
<td>Hydrolitorales Mischsubstrat der Ostsee mit ver einzelnem Epibenthos oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>05.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Epibenthos</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit mehrjährigen (festsitzenden) Makroalgen</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Fucus</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Furcellaria lumbricalis</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Laminaria saccharina - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3</td>
</tr>
<tr>
<td>05.02.01.01.03.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit mehrjährigen, blattförmigen Rotalgen (Coccolithus/ Delesseria/Phyllophora/Phycodrys) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit epibenthischen Krebsen (Crustacea), vor allem Seepocken (Balanidae)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.01.01.03.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit epibenthischen Muscheln (Bivalvia)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.01.01.03.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Wandermuscheln (Dreissena polymorpha) - nur in flachen Buchten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>#</td>
</tr>
<tr>
<td>05.02.01.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Moostierchen (Bryozoa) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Nesseltieren (Cnidaria)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.01.01.05.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Blumentieren (Anthozoa) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.05.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Hydroidpolypen (Hydrozoa)</td>
<td>V</td>
</tr>
<tr>
<td>CODEs der Biotopientypen</td>
<td>FFH-LRT eindeutig.32</td>
<td>FFH-LRT unklar.33</td>
<td>BIOTOPTYP</td>
<td>RLD.34</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>05.02.01.01.06</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Schwämmen (Porifera) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.01.01.07</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit Seescheiden (Asciacea) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>V</td>
</tr>
<tr>
<td>05.02.01.01.08</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit einjährigen (festsitzenden) Makroalgen</td>
<td></td>
</tr>
<tr>
<td>05.02.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Felsen- und Steingrund der Ostsee mit vereinzeltem Epibenthos, Weidegängern oder ohne Makroflora und -fauna</td>
<td>*</td>
</tr>
<tr>
<td>05.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, aufragender Geschiebemergelgrund der Ostsee - vorwiegend an exponierten Küstenabschnitten der offenen Ostsee</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Geschiebemergelgrund der Ostsee - vorwiegend an exponierten Küstenabschnitten der offenen Ostsee</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.04</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Ostsee</td>
<td>3</td>
</tr>
<tr>
<td>05.02.06</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Epibenthos</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit wurzelnden Pflanzen</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.06.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Armleuchteralgen (Characeae) - nur in flachen BUCHten (Bodden, Haffe), Förden, Lagunen und ÄSTuaren</td>
<td>2</td>
</tr>
<tr>
<td>05.02.06.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Laichkräutern (Potamogeton/Stuckenia) - nur in flachen BUCHten (Bodden, Haffe), Förden, Lagunen und ÄSTuaren</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Meer- salden (Ruppia) - überwiegend in flachen BUCHten (Bodden, Haffe), Förden, Lagunen und ÄSTuaren</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.06.01.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit See-gräsern (Zostera-Seebraswiesn)</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.06.01.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Teich- faden (Zannichellia palustris) - nur in flachen BUCHten (Bodden, Haffe), Förden, Lagunen und ÄSTuaren</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit mehrjährigen (festsitzenden) Makroalgen</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Fucus</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.06.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Furcellaria lumbricalis</td>
<td>2–3</td>
</tr>
<tr>
<td>CODEs der Biotoptypen</td>
<td>FFH-LRT eindeutig32</td>
<td>FFH-LRT unklar33</td>
<td>BIOTOPTYP</td>
<td>RLD34</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>05.02.06.01.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Laminaria saccharina - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3</td>
</tr>
<tr>
<td>05.02.06.01.02.04</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit mehrjährigen, blattförmigen Rotalgen (Coccotylus/ Delesseria/Phyllophora/Phycodrys) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.06.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit epibenthischen Krebsen (Crustacea), vor allem Seecken (Balanidae)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit epibenthischen Muscheln</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.04.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Miesmuscheln (Mytilus)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.04.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Wandermuscheln (Dreissena polymorpha) - nur in flachen Buchten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>*</td>
</tr>
<tr>
<td>05.02.06.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Moos tierchen (Bryozoa) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.06</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Nessel tieren (Cnidaria)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.06.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Blumentieren (Anthozoa) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.06.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Hydroidpolyphen (Hydrozoa)</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.07</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Schwämmen (Porifera) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.08</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit Seecheiden (Asciacea) - nur in der offenen Ost see oder tieferen Buchten und Förden</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.09</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit mehrjährigen (nicht festsitzenden) Makroalgen - nur in flachen Buchten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>V</td>
</tr>
<tr>
<td>05.02.06.01.10</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>05.02.06.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales Mischsubstrat der Ostsee mit vereinzeltem Epibenthos, Weidegängern oder ohne epibenthische Makroflora oder -fauna</td>
<td>*</td>
</tr>
<tr>
<td>05.02.07</td>
<td>1170</td>
<td></td>
<td>Sublitorale Grobsedimentbank der Ostsee (Sandbank-Komplex)</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.08</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee</td>
<td>3–V</td>
</tr>
<tr>
<td>CODEs der Biotoptypen</td>
<td>FFH-LRT eindeutig</td>
<td>FFH-LRT unklar</td>
<td>BIOTOPTYP</td>
<td>RLD</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>05.02.08.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit Epibenthos</td>
<td>*</td>
</tr>
<tr>
<td>05.02.08.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit mehrjährigen (festsitzenden) Makroalgen</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.08.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit Fucus</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.08.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit Laminaria saccharina - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3</td>
</tr>
<tr>
<td>05.02.08.01.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit mehrjährigen, blattförmigen Rotalgen (Coccotylus/Delesseria/Phyllophora/Phycodrys) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>3–V</td>
</tr>
<tr>
<td>05.02.08.01.04</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit Seescheiden (Asciadiaea) - nur in der offenen Ostsee oder tieferen Buchten und Förden</td>
<td>*</td>
</tr>
<tr>
<td>05.02.08.01.05</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit einjährigen (festsitzenden) Makroalgen</td>
<td>*</td>
</tr>
<tr>
<td>05.02.10</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Ostsee</td>
<td>*</td>
</tr>
<tr>
<td>05.02.10.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Ostsee mit Epibenthos</td>
<td>2–3</td>
</tr>
<tr>
<td>05.02.11</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schlickgrund der Ostsee</td>
<td>*</td>
</tr>
<tr>
<td>05.02.11.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schlickgrund der Ostsee mit Epibenthos</td>
<td>3–V</td>
</tr>
<tr>
<td>02.02.04.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia) (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.04.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee mit (lagestabilen) Europäischen Austern (Ostrea edulis) (biogenes Riff)</td>
<td>0</td>
</tr>
<tr>
<td>02.02.04.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas) (biogenes Riff)</td>
<td>#</td>
</tr>
<tr>
<td>02.02.04.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schillgrund der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus edulis) (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.08.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit (lagestabilen) epibenthischen Muscheln (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.08.01.01.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit (lagestabilen) Europäischen Austern (Ostrea edulis) (biogenes Riff)</td>
<td>0</td>
</tr>
<tr>
<td>02.02.08.01.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas) (biogenes Riff)</td>
<td>#</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>02.02.08.01.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus edulis) (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.10.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit (lagestabilen) epibenthischen Muscheln (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>02.02.10.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit (lagestabilen) Europäischen Austern (Ostrea edulis) (biogenes Riff)</td>
<td>0</td>
</tr>
<tr>
<td>02.02.10.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit (lagestabilen) Pazifischen Austern (Crassostrea gigas) (biogenes Riff)</td>
<td>#</td>
</tr>
<tr>
<td>02.02.10.01.02.03</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Nordsee mit (lagestabilen) Miesmuscheln (Mytilus edulis) (biogenes Riff)</td>
<td>2</td>
</tr>
<tr>
<td>05.02.08.01.03</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia) (biogenes Riff)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.08.01.03.01</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenses Grobsediment der Ostsee mit (lagestabilen) Miesmuscheln (Mytilus) (biogenes Riff)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.08.01.03.02</td>
<td>1170</td>
<td></td>
<td>Sublitorales, ebenes Grobsediment der Ostsee mit (lagestabilen) Wandermuscheln (Dreissena polymorpha) (biogenes Riff) - nur in flachen Buchtten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>*</td>
</tr>
<tr>
<td>05.02.10.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Ostsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia) (biogenes Riff)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.10.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Ostsee mit (lagestabilen) Miesmuscheln (Mytilus) (biogenes Riff)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.10.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler, ebener Sandgrund der Ostsee mit (lagestabilen) Wandermuscheln (Dreissena polymorpha) (biogenes Riff) - nur in flachen Buchtten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>*</td>
</tr>
<tr>
<td>05.02.11.01.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schlickgrund der Ostsee mit (lagestabilen) epibenthischen Muscheln (Bivalvia) (biogenes Riff)</td>
<td>#</td>
</tr>
<tr>
<td>05.02.11.01.02.01</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schlickgrund der Ostsee mit (lagestabilen) Miesmuscheln (Mytilus) (biogenes Riff)</td>
<td>*</td>
</tr>
<tr>
<td>05.02.11.01.02.02</td>
<td>1170</td>
<td></td>
<td>Sublitoraler Schlickgrund der Ostsee mit (lagestabilen) Wandermuscheln (Dreissena polymorpha) (biogenes Riff) - nur in flachen Buchtten (Bodden, Haffe), Förden, Lagunen und Ästuaren</td>
<td>*</td>
</tr>
</tbody>
</table>
Anlage 6

Illustrierte Entscheidungshilfen für die videogestützte Erfassung und Kartierung von biologisch charakterisierten Riffen auf Restsedimenten mit vereinzelten Steinen und/oder Blöcken.

(Erläuterung der Kriterien siehe Kapitel 4.2.1 und Abb. 6)

Kriterium 1 Nordsee (mindestens 3 Arten rifftypischer Taxa aus Anlage 4 im gesamten Video transekt), Beispiel Sylter Außen riff:

Abb. 18: Rifftypische Taxa: (1) Blumentiere (*Metridium*), (2) Großkrebs (Taschenkrebs), (3) Essbarer Seeigel (Quelle: Video AWI/IOW)

35 (1) bedeutet erstes rifftypisches Taxon, (2) zweites, usw.....
Abb. 19: ergänzend zu Abb. 18 (4) Kalkröhrenwürmer (Quelle: Video AWI/IOW)

Abb. 20: ergänzend zu Abb. 18 und Abb. 19 (5) Hydrozoa (Quelle: Video AWI/IOW)
Kriterium 1 Ostsee (mindestens 6 Arten rifftypischer Taxa aus Anlage 4 im gesamten Videotransekt), Beispiele Fehmarnbelt

Bsp. 1

Abb. 21: Rifftypische Taxa: (1) Mehrjährige Blättrige Rotalgen, (2) Blätter-Moostierchen, (3) Hydro-Polypen, (4) Fische (Klippenbarsch) (Quelle: Video IOW)

Abb. 22: ergänzend zu Abb. 21 (5) Zuckertang, (6) Schlauchseescheide (Quelle: Video IOW)
Abb. 23: Rifftypische Taxa: (1) Großschnecken, (2) Schlauchseescheide, (3) Mehrjährige, blättrige Rotalgen (Quelle: Video IOW)

Abb. 24: ergänzend zu Abb. 23 (4) Zuckertang, (5) Großkrebse (Hyas sp.), (6) Blätter-Moostierchen (Quelle: Video IOW)
Kriterium 2 Nordsee (epibenthische Gemeinschaft von bedeutenden Strukturbildnern geprägt, das heißt Bedeckungsgrad des Hartsubstrats punktuell ≥ 50 %), Beispiel Borkum Riffgrund

Abb. 25: Seenelken als bedeutende Strukturbildner (Quelle: Video BIOCONSULT)
Kriterium 2 Ostsee (epibenthische Gemeinschaft von bedeutenden Strukturbildnern geprägt, das heißt Bedeckungsgrad des Hartsubstrats punktuell ≥ 50 %), Beispiele für Transsekttausschnitte mit mindestens 50 %:

Bsp. 1

Abb. 26: Miesmuscheln als bedeutende Strukturbildner am Adlergrund in ca. 25 m Tiefe (Quelle: Video BfN)

Bsp. 2

Abb. 27: Verschiedene Arten als bedeutende Strukturbildner im Fehmarnbelt in ca. 18 m Tiefe (Quelle: Video IOW)
Bsp. 3

Abb. 28: Blättrige Rotalgen als bedeutende Strukturbildner auf der Darßer Schwelle in ca. 16 m Tiefe (Quelle: Video IOW)

Bsp. 4

Abb. 29: Verschiedene Arten als bedeutende Strukturbildner (Schwämme, blättrige Rotalgen) in der Kadettrinne in ca. 20 m Tiefe (Quelle: Video IOW)
Kriterium 3 Nordsee epibenthisch dominierte Gemeinschaft vorhanden

(Bedeckungsgrad des Meeresbodens entlang eines Videotranseks mindestens 5 %)

Bsp. 1

Abb. 30: Epibenthisch dominierte Gemeinschaft mit unter anderem *Metridium senile* im Sylter Außenriff in ca. 25 m Tiefe (Quelle: Video BIOCONSULT)

Bsp. 2

Abb. 31: Epibenthisch dominierte Gemeinschaft mit *Metridium senile* und Hydro-Polypen im Borkum Riffgrund in ca. 27 m Tiefe (Quelle: Video BIOCONSULT)
Kriterium 3 Ostsee epibenthisch dominierte Gemeinschaft vorhanden

(Bedeckungsgrad des Meeresbodens entlang eines Videotransekt mind. 10 %)

Bsp. 1

Abb. 32: Epibenthisch dominierte Gemeinschaft (Miesmuscheln) am Adlergrund in ca. 15 m Tiefe (Quelle: Video BfN)

Bsp. 2

Abb. 33: Epibenthisch dominierte Gemeinschaft (Rotalgen und Miesmuscheln) am Adlergrund in ca. 11 m Tiefe (Quelle: Video IOW)
Abb. 34: Epibenthisch dominierte Gemeinschaft (Miesmuscheln) im Schutzgebiet Westliche Rönnebank in ca. 25 m Tiefe (Quelle: Video IOW)

Abb. 35: Epibenthisch dominierte Gemeinschaft (Rotalgen) im Schutzgebiet Kadetrinne in ca. 20 m Tiefe (Quelle: Video IOW)
Abb. 36: Epibenthisch dominierte Gemeinschaft (*Metridium* sp.) in der Kieler Bucht in ca. 20 m Tiefe (Quelle: Video IOW)

Abb. 37: Epibenthisch dominierte Gemeinschaft (Schwämme, Hydrozoen und Manteltiere) im Fehmarnbelt in ca. 28 m Tiefe (Quelle: Video IOW)
Abb. 38: Ablaufschema mit Vorgaben zur Kartierung geogener Riffe.